Fra Wikipedia, den frie encyklopedi
Kildeløs : Denne artikkelen mangler
kildehenvisninger , og opplysningene i den kan dermed være vanskelige å
verifisere . Kildeløst materiale kan bli
fjernet . Helt uten kilder.
(10. okt. 2015 )
Følgende er en liste over ubestemte integraler (antideriverte ) til uttrykk som involverer de inverse trigonometriske funksjonene . For en liste over integralformler, se lister over integraler .
De inverse trigonometriske funksjonene er også kjent som de syklometriske funksjonene.
C brukes for den vilkårlige integrasjonskonstanten som bare kan bestemmes hvis noe om verdien av integralet på noe punkt, er kjent. Derfor har hver funksjon et uendelig antall antideriverte.
Det er tre vanlige notasjonsmåter for inverse trigonometriske funksjoner. Funksjonen arcsinus, for eksempel, kan skrives som sin−1 , asin eller, som brukt på denne siden, arcsin .
For hver integrasjonsformel for inverse trigonometriske funksjoner nedenfor er det en korresponderende formel i listen over integraler av inverse hyperbolske funksjoner .
∫
arcsin
(
a
x
)
d
x
=
x
arcsin
(
a
x
)
+
1
−
a
2
x
2
a
+
C
{\displaystyle \int \arcsin(a\,x)\,dx=x\arcsin(a\,x)+{\frac {\sqrt {1-a^{2}\,x^{2}}}{a}}+C}
∫
x
arcsin
(
a
x
)
d
x
=
x
2
arcsin
(
a
x
)
2
−
arcsin
(
a
x
)
4
a
2
+
x
1
−
a
2
x
2
4
a
+
C
{\displaystyle \int x\arcsin(a\,x)\,dx={\frac {x^{2}\arcsin(a\,x)}{2}}-{\frac {\arcsin(a\,x)}{4\,a^{2}}}+{\frac {x{\sqrt {1-a^{2}\,x^{2}}}}{4\,a}}+C}
∫
x
2
arcsin
(
a
x
)
d
x
=
x
3
arcsin
(
a
x
)
3
+
(
a
2
x
2
+
2
)
1
−
a
2
x
2
9
a
3
+
C
{\displaystyle \int x^{2}\arcsin(a\,x)\,dx={\frac {x^{3}\arcsin(a\,x)}{3}}+{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {1-a^{2}\,x^{2}}}}{9\,a^{3}}}+C}
∫
x
m
arcsin
(
a
x
)
d
x
=
x
m
+
1
arcsin
(
a
x
)
m
+
1
−
a
m
+
1
∫
x
m
+
1
1
−
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arcsin(a\,x)\,dx={\frac {x^{m+1}\arcsin(a\,x)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}\,x^{2}}}}\,dx\quad (m\neq -1)}
∫
arcsin
(
a
x
)
2
d
x
=
−
2
x
+
x
arcsin
(
a
x
)
2
+
2
1
−
a
2
x
2
arcsin
(
a
x
)
a
+
C
{\displaystyle \int \arcsin(a\,x)^{2}\,dx=-2\,x+x\arcsin(a\,x)^{2}+{\frac {2{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)}{a}}+C}
∫
arcsin
(
a
x
)
n
d
x
=
x
arcsin
(
a
x
)
n
+
n
1
−
a
2
x
2
arcsin
(
a
x
)
n
−
1
a
−
n
(
n
−
1
)
∫
arcsin
(
a
x
)
n
−
2
d
x
{\displaystyle \int \arcsin(a\,x)^{n}\,dx=x\arcsin(a\,x)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)^{n-1}}{a}}\,-\,n\,(n-1)\int \arcsin(a\,x)^{n-2}\,dx}
∫
arcsin
(
a
x
)
n
d
x
=
x
arcsin
(
a
x
)
n
+
2
(
n
+
1
)
(
n
+
2
)
+
1
−
a
2
x
2
arcsin
(
a
x
)
n
+
1
a
(
n
+
1
)
−
1
(
n
+
1
)
(
n
+
2
)
∫
arcsin
(
a
x
)
n
+
2
d
x
(
n
≠
−
1
,
−
2
)
{\displaystyle \int \arcsin(a\,x)^{n}\,dx={\frac {x\arcsin(a\,x)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}\,x^{2}}}\arcsin(a\,x)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arcsin(a\,x)^{n+2}\,dx\quad (n\neq -1,-2)}
∫
arccos
(
a
x
)
d
x
=
x
arccos
(
a
x
)
−
1
−
a
2
x
2
a
+
C
{\displaystyle \int \arccos(a\,x)\,dx=x\arccos(a\,x)-{\frac {\sqrt {1-a^{2}\,x^{2}}}{a}}+C}
∫
x
arccos
(
a
x
)
d
x
=
x
2
arccos
(
a
x
)
2
−
arccos
(
a
x
)
4
a
2
−
x
1
−
a
2
x
2
4
a
+
C
{\displaystyle \int x\arccos(a\,x)\,dx={\frac {x^{2}\arccos(a\,x)}{2}}-{\frac {\arccos(a\,x)}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}\,x^{2}}}}{4\,a}}+C}
∫
x
2
arccos
(
a
x
)
d
x
=
x
3
arccos
(
a
x
)
3
−
(
a
2
x
2
+
2
)
1
−
a
2
x
2
9
a
3
+
C
{\displaystyle \int x^{2}\arccos(a\,x)\,dx={\frac {x^{3}\arccos(a\,x)}{3}}-{\frac {\left(a^{2}\,x^{2}+2\right){\sqrt {1-a^{2}\,x^{2}}}}{9\,a^{3}}}+C}
∫
x
m
arccos
(
a
x
)
d
x
=
x
m
+
1
arccos
(
a
x
)
m
+
1
+
a
m
+
1
∫
x
m
+
1
1
−
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arccos(a\,x)\,dx={\frac {x^{m+1}\arccos(a\,x)}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}\,x^{2}}}}\,dx\quad (m\neq -1)}
∫
arccos
(
a
x
)
2
d
x
=
−
2
x
+
x
arccos
(
a
x
)
2
−
2
1
−
a
2
x
2
arccos
(
a
x
)
a
+
C
{\displaystyle \int \arccos(a\,x)^{2}\,dx=-2\,x+x\arccos(a\,x)^{2}-{\frac {2{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)}{a}}+C}
∫
arccos
(
a
x
)
n
d
x
=
x
arccos
(
a
x
)
n
−
n
1
−
a
2
x
2
arccos
(
a
x
)
n
−
1
a
−
n
(
n
−
1
)
∫
arccos
(
a
x
)
n
−
2
d
x
{\displaystyle \int \arccos(a\,x)^{n}\,dx=x\arccos(a\,x)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)^{n-1}}{a}}\,-\,n\,(n-1)\int \arccos(a\,x)^{n-2}\,dx}
∫
arccos
(
a
x
)
n
d
x
=
x
arccos
(
a
x
)
n
+
2
(
n
+
1
)
(
n
+
2
)
−
1
−
a
2
x
2
arccos
(
a
x
)
n
+
1
a
(
n
+
1
)
−
1
(
n
+
1
)
(
n
+
2
)
∫
arccos
(
a
x
)
n
+
2
d
x
(
n
≠
−
1
,
−
2
)
{\displaystyle \int \arccos(a\,x)^{n}\,dx={\frac {x\arccos(a\,x)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}\,x^{2}}}\arccos(a\,x)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arccos(a\,x)^{n+2}\,dx\quad (n\neq -1,-2)}
∫
arctan
(
a
x
)
d
x
=
x
arctan
(
a
x
)
−
ln
(
a
2
x
2
+
1
)
2
a
+
C
{\displaystyle \int \arctan(a\,x)\,dx=x\arctan(a\,x)-{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{2\,a}}+C}
∫
x
arctan
(
a
x
)
d
x
=
x
2
arctan
(
a
x
)
2
+
arctan
(
a
x
)
2
a
2
−
x
2
a
+
C
{\displaystyle \int x\arctan(a\,x)\,dx={\frac {x^{2}\arctan(a\,x)}{2}}+{\frac {\arctan(a\,x)}{2\,a^{2}}}-{\frac {x}{2\,a}}+C}
∫
x
2
arctan
(
a
x
)
d
x
=
x
3
arctan
(
a
x
)
3
+
ln
(
a
2
x
2
+
1
)
6
a
3
−
x
2
6
a
+
C
{\displaystyle \int x^{2}\arctan(a\,x)\,dx={\frac {x^{3}\arctan(a\,x)}{3}}+{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C}
∫
x
m
arctan
(
a
x
)
d
x
=
x
m
+
1
arctan
(
a
x
)
m
+
1
−
a
m
+
1
∫
x
m
+
1
a
2
x
2
+
1
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arctan(a\,x)\,dx={\frac {x^{m+1}\arctan(a\,x)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}+1}}\,dx\quad (m\neq -1)}
∫
arccot
(
a
x
)
d
x
=
x
arccot
(
a
x
)
+
ln
(
a
2
x
2
+
1
)
2
a
+
C
{\displaystyle \int \operatorname {arccot}(a\,x)\,dx=x\operatorname {arccot}(a\,x)+{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{2\,a}}+C}
∫
x
arccot
(
a
x
)
d
x
=
x
2
arccot
(
a
x
)
2
+
arccot
(
a
x
)
2
a
2
+
x
2
a
+
C
{\displaystyle \int x\operatorname {arccot}(a\,x)\,dx={\frac {x^{2}\operatorname {arccot}(a\,x)}{2}}+{\frac {\operatorname {arccot}(a\,x)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
∫
x
2
arccot
(
a
x
)
d
x
=
x
3
arccot
(
a
x
)
3
−
ln
(
a
2
x
2
+
1
)
6
a
3
+
x
2
6
a
+
C
{\displaystyle \int x^{2}\operatorname {arccot}(a\,x)\,dx={\frac {x^{3}\operatorname {arccot}(a\,x)}{3}}-{\frac {\ln \left(a^{2}\,x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
∫
x
m
arccot
(
a
x
)
d
x
=
x
m
+
1
arccot
(
a
x
)
m
+
1
+
a
m
+
1
∫
x
m
+
1
a
2
x
2
+
1
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arccot}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arccot}(a\,x)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}\,x^{2}+1}}\,dx\quad (m\neq -1)}
∫
arcsec
(
a
x
)
d
x
=
x
arcsec
(
a
x
)
−
1
a
arctanh
1
−
1
a
2
x
2
+
C
{\displaystyle \int \operatorname {arcsec}(a\,x)\,dx=x\operatorname {arcsec}(a\,x)-{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫
x
arcsec
(
a
x
)
d
x
=
x
2
arcsec
(
a
x
)
2
−
x
2
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x\operatorname {arcsec}(a\,x)\,dx={\frac {x^{2}\operatorname {arcsec}(a\,x)}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫
x
2
arcsec
(
a
x
)
d
x
=
x
3
arcsec
(
a
x
)
3
−
1
6
a
3
arctanh
1
−
1
a
2
x
2
−
x
2
6
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x^{2}\operatorname {arcsec}(a\,x)\,dx={\frac {x^{3}\operatorname {arcsec}(a\,x)}{3}}\,-\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,C}
∫
x
m
arcsec
(
a
x
)
d
x
=
x
m
+
1
arcsec
(
a
x
)
m
+
1
−
1
a
(
m
+
1
)
∫
x
m
−
1
1
−
1
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arcsec}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arcsec}(a\,x)}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}}\,dx\quad (m\neq -1)}
∫
arccsc
(
a
x
)
d
x
=
x
arccsc
(
a
x
)
+
1
a
arctanh
1
−
1
a
2
x
2
+
C
{\displaystyle \int \operatorname {arccsc}(a\,x)\,dx=x\operatorname {arccsc}(a\,x)+{\frac {1}{a}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫
x
arccsc
(
a
x
)
d
x
=
x
2
arccsc
(
a
x
)
2
+
x
2
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x\operatorname {arccsc}(a\,x)\,dx={\frac {x^{2}\operatorname {arccsc}(a\,x)}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}+C}
∫
x
2
arccsc
(
a
x
)
d
x
=
x
3
arccsc
(
a
x
)
3
+
1
6
a
3
arctanh
1
−
1
a
2
x
2
+
x
2
6
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x^{2}\operatorname {arccsc}(a\,x)\,dx={\frac {x^{3}\operatorname {arccsc}(a\,x)}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {arctanh} \,{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}\,+\,C}
∫
x
m
arccsc
(
a
x
)
d
x
=
x
m
+
1
arccsc
(
a
x
)
m
+
1
+
1
a
(
m
+
1
)
∫
x
m
−
1
1
−
1
a
2
x
2
d
x
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arccsc}(a\,x)\,dx={\frac {x^{m+1}\operatorname {arccsc}(a\,x)}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}\,x^{2}}}}}}\,dx\quad (m\neq -1)}
Autoritetsdata